

1 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

Memory Cards – Tiger Basic API

V 1.3

2 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

Introduction ...4
Change History of this Document ..4
Configure interface to Memory Card hardware ...5

Interface to SD/MMC hardware...5
Interface to SmartMedia hardware..8

Direct Access to Memory Cards ...9
Direct Access to SD/MMC Card ...9

Working with SD/MMC Card using Direct Access9
Deactivate FAT subroutines ...9
Initialize hardware ..9
Read Data ...11
Write Data...12
Read Card Size..13

Direct Access to SmartMedia Card ..14
Working with SmartMedia Card using Direct Access14
User Function Codes for SmartMedia Device Driver Instructions14

File System (FAT) Support for Memory Cards..16
Working with SD/MMC Card using FAT ..16
Working with SmartMedia Card using FAT ...16
Requirements ...16
Initialize File System Hardware ...17
Set Up File System..18
Open File ..19
Close File ..21
Read from File...22
Write to File ..24
Get File Position..25
Set File Position..26
Get File Size..28
Root Directory, Absolute and Relative Paths ...29
Create Directory..30
Delete File or Directory..31
Set Current Directory ..32
File Attributes ...33
Get File Attributes...34
Set File Attributes ...35
File Time and Date ..36
Convert Time and Date Stamps ...37
Get File Time...39
Set File Time ...40

3 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

Find File ..41
Search for File Name ...43
Get Information About File System..44
Synchronize the File System ...46

4 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

Introduction
This document describes the Tiger Basic API (application programming interface)

for SD/MMC and SmartMedia card.

The chapter “Configure Interface to Memory Cards Hardware” explains how to set

up pins and addresses that are relevant for communication with attached SD/MMC
card hardware and how to set the parameters of the SmartMedia device driver. To
obtain the information about what pins and addresses are to use, see the
corresponding datasheets.

The chapter “Direct Access to Memory Cards” describes the subroutines of the

API that implement direct access to the card memory without involving any
file/directory constructs.

The chapter “File System (FAT) Support for Memory Cards” concentrates on the

work with the card using the FAT file system.

The access to SD/MMC cards is based on SPI and implemented by using of

shift_in, shift_out instructions of the Tiger Basic programming language, without any
special device driver.

The access to SmartMedia card is based on using of a dedicated device driver

SMEDIA_128MB.

Change History of this Document
V1.2 to V1.3:
1. New chapter “Deactivate FAT subroutines” for Direct Access is added.
2. This chapter “Change History of this Document” is added

5 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

Configure interface to Memory Card hardware

Interface to SD/MMC hardware
The file sd_card_pins_d.inc contains the pin definitions for the different

configurations.

The configurations define how the SD/MMC card is connected to the Tiger Basic.

The pin definition block is normally surrounded by “ifdef … endif” pair like:

' sd_card_pins_d.inc

'***
' Pin Description for My Own Configuration
'***

#ifdef MY_CONFIGURATION
.
#endif '' MY_CONFIGURATION

Such structure of the pin definition block enables very simple selecting of the

active hardware configuration. The corresponding “define” instruction must merely
appear in the TIG file before any “include” instruction.

' my_application.tig

' Activate My Own Configuration
#define MY_CONFIGURATION
.
#include define_a.inc
#include fs_coinc.inc
.

The following table shows what constants must be defined to execute the SD

card routines correctly and what meaning the constants have.
Some service lines of the SD card hardware can be connected by using of either

tiger module pins directly, or X-Port (see e.g. SD_XP_POWER and SD_I_POWER). Two
constants are reserved for these lines, but only one of these constants must be active
in the particular configuration.

6 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

Configuration Constant Description

SD_SPI_PORT Port for SPI lines (all three on one Port!)

SD_SPI_DATA_IN_PIN Pin for SPI MiSo (Tiger-In, Card-Out)

SD_SPI_DATA_OUT_PIN Pin for SPI MoSi (Tiger-Out, Card-In)

SD_SPI_CLOCK_PIN Pin for SPI Clock

SD_XP_ADDRESS X-Port Address for Control Lines (if it is not
defined, all SD_XP_x settings are disabled)

SD_XP_POWER_OFFSET Offset to X-Port Address for Power Line (if not
necessary, must be set to zero)

SD_XP_SDCARD_DETECT Bit of X-Port for Card Detect Line

SD_XP_WRITE_PROTECT Bit of X-Port for Write Protect Line

SD_XP_POWER Bit of X-Port for Power Line

SD_XP_ERROR_INDICATOR Bit of X-Port for Error Indication Line

SD_XP_CHIP_SELECT Bit of X-Port for Chip Select Line

SD_I_PORT Port for Control Lines (if it is not defined, all
SD_I_x settings are disabled)

SD_I_SDCARD_DETECT Pin for Card Detect Line

SD_I_WRITE_PROTECT Pin for Write Protect Line

SD_I_POWER Pin for Power Line

SD_I_ERROR_INDICATOR Pin for Error Indication Line

SD_I_CHIP_SELECT Pin for Chip Select Line

The simplest way to create own pin definition block is to copy an existing block

and modify it. For pre-defined pin definition blocks see the sd_card_pins_d.inc file.

Example of a pin definition block from the sd_card_pins_d.inc file.

7 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

'**'
' Pin Description for SD Card Adapter 1
'**'
#ifdef SD_ADAPTER1
'' SPI configuration
#define SD_SPI_PORT 8
'' MiSo (Tiger - In, Card - Out)
#define SD_SPI_DATA_IN_PIN 2
'' MoSi (Tiger - Out, Card - In)
#define SD_SPI_DATA_OUT_PIN 1
'' Clock
#define SD_SPI_CLOCK_PIN 0

'' Features controlled over X-Port
'' X-Port Address for Control Lines
#define SD_XP_ADDRESS 00F8h
'' Offset to X-Port Address for Power Line (if not necessary, must be set to
zero)
#define SD_XP_POWER_OFFSET 1

#ifdef SD_XP_ADDRESS
'' Bit of X-Port for Card Detect Line
#define SD_XP_SDCARD_DETECT 2
'' Bit of X-Port for Write Protect Line
#define SD_XP_WRITE_PROTECT 4
'' Bit of X-Port for Power Line
#define SD_XP_POWER 6
'' Bit of X-Port for Error Indication Line (unused in this configuration)
'' #define SD_XP_ERROR_INDICATOR 1
'' Bit of X-Port for Chip Select Line (unused in this configuration)
'' #define SD_XP_CHIP_SELECT 0
#endif '' SD_XP_ADDRESS

'' Features controlled over Tiger-Pins
'' Port Address for Control Lines
#define SD_I_PORT 8
#ifdef SD_I_PORT
'' Pin for Card Detect Line (unused in this configuration)
'' #define SD_I_SDCARD_DETECT 2
'' Pin for Write Protect Line (unused in this configuration)
'' #define SD_I_WRITE_PROTECT 4
'' Pin for Power Line (unused in this configuration)
'' #define SD_I_POWER 7
'' Pin for Error Indication Line
#define SD_I_ERROR_INDICATOR 3
'' Pin for Chip Select Line
#define SD_I_CHIP_SELECT 6
#endif '' SD_I_PORT
#endif '' SD_ADAPTER1

8 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

Interface to SmartMedia hardware
The device driver SMEDIA_128MB implements the interface to SmartMedia

hardware. This driver has to be installed in the Main task of a Tiger Basic program.

The following parameters of the SMEDIA_128MB driver can be set to configure

the interface to SmartMedia hardware.

install_device #SMCARD, "SMEDIA_128MB.TDD", P1, P2, P3, P4, P5, P6, P7

P1 data bus port,
P2 control port,
P3 read enable pin of control port,
P4 write enable pin of control port,
P5 chip enable pin of control port,
P6 command latch enable pin of control port,
P7 ADR latch enable pin of control port.

' install SmartMedia with expl. settings
' Ctrl
' Bus RE WE CE CLE ALE, speed
 install_device #SMCARD, "SMEDIA_128MB.TDD",6,8,0, 1, 6, 4, 2

9 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

Direct Access to Memory Cards

Direct Access to SD/MMC Card

Working with SD/MMC Card using Direct Access

The following simple steps are necessary to read from or write to SD/MMC card
using direct access methods.

Deactivate FAT subroutines

To reduce FLASH and RAM consumption, one can deactivate FAT subroutines
that are normally not applied for direct access to the card. Commenting out the
definition FAT_ACTIVE in the file “fs_conf.inc” excludes the FAT subroutines and
global variables from compilation process.

Initialize hardware

sub bSDCardInit(var byte bpvRet)

bpvRet return value that is set to TRUE on success and to FALSE on
error.

The subroutine bSDCardInit completes the following tasks:

- Initialization of the SPI lines and additional control lines connected to SD
card interface,

- Checking the SD card detection line,

- Resetting the SD card,

- Initialization of the API global variables.

The subroutine bSDCardInit must be called before any other subroutine of this
SD card API is called.

Example for the subroutine bSDCardInit:

1. Configure Interface to
Hardware
2. Initialize Hardware
3. Read Data
4. Write Data

1. Make correct pin definitions in
sd_card_pins_d.inc
2. bSDCardInit
3. bSDReadBlock
4. bSDWriteBlock

API

10 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

byte blStatus
.
call bSDCardInit(blStatus)

11 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

Read Data

sub bSDReadBlock(long lpAddress; long lpSize; var string spvBuffer$; var byte
bpvResult)

lpAddress the address on the card to read data from. The first address on
the card is 0 (zero).

lpSize the size of the data to read.

spvReadData$ the buffer to store the read data. The buffer must be large
enough to hold all the read bytes.

bpvResult return value that is set to TRUE on successful reading and to
FALSE on error.

Example for the subroutine bSDReadBlock:

#define READ_DATA_SIZE 512
.
byte blStatus
long llAddress, llSize
string slReadData$(READ_DATA_SIZE)
.
llAddress = 0c600h
llSize = READ_DATA_SIZE
slReadData$ = “”
call bSDReadBlock (llAddress, llSize, slReadData$, blStatus)

12 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

Write Data

sub bSDWriteBlock(long lpAddress; long lpSize; var string spvDataToWrite$; var
byte bpvResult)

lpAddress the address on the card to write data to. The first address on the
card is 0 (zero).

lpSize the size of the data to write.

spvDataToWrite$ the buffer containing the data to write to the card.

bpvResult return value that is set to TRUE on successful reading and to
FALSE on error.

Example for the subroutine bSDWriteBlock:

#define DATA_TO_WRITE_SIZE 512
.
byte blStatus
long llAddress, llSize
string slDataToWrite$(DATA_TO_WRITE_SIZE)
.
llAddress = 0c600h
llSize = DATA_TO_WRITE_SIZE
slDataToWrite$ = “The quick brown fox jumps over the lazy dog”
call bSDWriteBlock (llAddress, llSize, slDataToWrite$, blStatus)

13 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

Read Card Size

sub lSDCardGetSize(var long lpvSDCardSize)

lpvSDCardSize the real size of the card.

The real size of the card can slightly differ from the size on the card label. To
obtain the rounded size of the card, call the subroutine lSDCardGetRoundedSize.

sub lSDCardGetRoundedSize(var long lpvSDCardRoundedSize)

lpvSDRoundedCardSize the rounded size of the card.

The subroutine lSDCardGetRoundedSize calls internally the subroutine
lSDCardGetSize.

Example for the subroutines lSDCardGetSize and lSDCardGetRoundedSize:

long llCardSize, llRoundedCardSize, llCardSizeDiff
.
call bSDCardGetSize (llCardSize)
call bSDCardGetRoundedSize (llRoundedCardSize)
llCardSizeDiff = llRoundedCardSize - llCardSize

14 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

Direct Access to SmartMedia Card

Working with SmartMedia Card using Direct Access

The usual device driver instructions (get, put) are used to read from or write to
SmartMedia card directly.

User Function Codes for SmartMedia Device Driver Instructions

The Get and Put instructions are used in combination with user function codes to
control SmartMedia card, read and write parameters or data.

User Function Code GET PUT

2 (ufunc_sm_mount) Mount: ID+Infoset+iBlks

3 (ufunc_sm_unmount) UnMount

4 (ufunc_sm_reset) Reset Card

5 (ufunc_sm_getstat) Read Status Byte

6 (ufunc_sm_getinfo) GET ID + Infoset

7 (ufunc_sm_getiblks) GET invalid Block Table

17 (ufunc_sm_eraseblk) ERASE Block abs (not
waiting)

ERASE Block abs (not
waiting)

18 (ufunc_sm_rdpage) READ-1-DATA-Page-abs

18 (ufunc_sm_wrpage) Write One Data Page abs.

19 (ufunc_sm_rdpagesp) Read One Data Page abs. +
Spare Field

19 (ufunc_sm_wrpagesp) Write One Data Page abs. +
Spare Field

1. Install Device Driver
2. Read Data
3. Write Data

1. install_device #SMC,
„SMEDIA_128MB“, . . .
2. get #SMC, …
3. put #SMC, …

Get, Put

15 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

24 (ufunc_sm_chk_sfe) Read & Check Spare Field
empty

25 (ufunc_sm_chk_pae) Read & Check Page empty

26 (ufunc_sm_first_eblk) Find first empty Block

27 (ufunc_sm_first_epage) Find first empty Page in Block

16 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

File System (FAT) Support for Memory Cards

Working with SD/MMC Card using FAT
The following simple steps are necessary to open a file, read from or write to the

file and close the file using FAT methods for SD/MMC card.

Working with SmartMedia Card using FAT
The following simple steps are necessary to open a file, read from or write to the

file and close the file using FAT methods for SmartMedia card.

Requirements
The Memory Cards (SD/MMC and SmartMedia) must be formatted with FAT 16,

to be used with the present FAT routines.

1. Configure Interface to
Hardware
2. Initialize File System
Hardware
3. Set Up File System
4. Open File
5. Read File Data
6. Write File Data
7. Close File

1. Install device driver
SMEDIA_128MB
2. bFileSystemHardwareInit

3. bSetupFileSystem
4. lOpenFile
5. lReadFile
6. lWriteFile
7. bCloseFile

API

1. Configure Interface to
Hardware
2. Initialize File System
Hardware
3. Set Up File System
4. Open File
5. Read File Data
6. Write File Data
7. Close File

1. Make correct pin definitions
in sd_card_pins_d.inc
2. bFileSystemHardwareInit

3. bSetupFileSystem
4. lOpenFile
5. lReadFile
6. lWriteFile
7. bCloseFile

API

17 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

Initialize File System Hardware

sub bFileSystemHardwareInit(var byte bpvHdInitOk)

bpvHdInitOk return value that is set to TRUE on successful initializing
and to FALSE on error.

The bFileSystemHardwareInit subroutine calls special subroutines initializing a

particular storage medium that is to be used by the file system. This subroutine
retrieves also the parameters of the storage medium.

Example for the subroutine bFileSystemHardwareInit:

'' name: file_open.tig
.
'' initialise file system hardware
call bFileSystemHardwareInit(blHdInitOk)
if blHdInitOk = TRUE then
.
endif

18 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

Set Up File System
sub bSetupFileSystem(var byte bpvIsFSSetupOk)

bpvIsFSSetupOk return value that is set to TRUE on success and to FALSE
on error.

The bSetupFileSystem subroutine initializes internal file system data, reads the
boot sector and retrieves current file system settings.

Example for the subroutine bSetupFileSystem:

'' name: file_open.tig
.
'' setup file system
call bSetupFileSystem(blIsFSSetupOk)
if blIsFSSetupOk = TRUE then
.
endif

19 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

Open File

sub lOpenFile(string spFileName$; long lpFlags; var long lpvHandle)

spFileName$ the name of the file that must be opened/created.

lpFlags the open mode flags.

lpvHandle return value that is a new file descriptor for the opened file.

The lOpenFile subroutine creates and returns a new file descriptor for the file
named by spFileName$. Initially, the file position indicator for the file is at the
beginning of the file.

The lpFlags argument controls how the file is to be opened. This is a bit mask;
you create the value by using bitwise OR on the appropriate parameters (using the
‘bitor’ operator in TB). File status flags lpFlags fall into three following categories.

File Access Modes:

The file access modes allow a file descriptor to be used for reading, writing, or
both. The access modes are chosen when the file is opened, and never change.

File Access Mode Constant Description

O_RDONLY Open the file for read access

O_WRONLY Open the file for write access

O_RDWR Open the file for both reading and writing

O_RDONLY and O_WRONLY are independent bits that can be bitwise-ORed

together, and it is valid for either bit to be set or clear. This means that O_RDWR is the
same as O_RDONLY bitor O_WRONLY. A file access mode of zero is equal in meaning
to O_RDWR.

20 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

Open-time Flags:
The open-time flags specify options affecting how open will behave. These

options are not preserved once the file is open.

Open-time Flag Constant Description

O_CREAT The file will be created if it doesn't already exist

O_EXIST Check, whether the file exists, don’t open the
file. In the case of a success the return value is
zero, which does not mean that a file descriptor
was assigned to an opened file

I/O Operating Modes:

The operating modes affect how input and output operations using a file
descriptor work.

I/O Operating Mode Constant Description

O_APPEND The bit that enables append mode for the
file. If set, then all ‘write’ operations write the
data at the end of the file, extending it,
regardless of the current file position. This is
the only reliable way to append to a file

The normal return value lpvHandle from lOpenFile is a non-negative long integer

file descriptor. In the case of an error, a value of {-1} is returned instead.

'' name: file_open.tig
.
#define NEW_FILENAME "Brave_New_File.txt"
.
'' create a new file and open it;
'' if the file already exists, just open it;
'' the file path "NEW_FILENAME" is relative to the Current Directory
llFlags = O_RDWR bitor O_CREAT
call lOpenFile(NEW_FILENAME, llFlags, llHandle)
if llHandle <> -1 then
.
endif

21 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

Close File

sub bCloseFile(long lpHandle; var byte bpvIsFileClosed)

lpHandle the file descriptor that was returned by the lOpenFile subroutine.

bpvIsFileClosed return value that is set to FALSE if the file descriptor lpHandle is
invalid, otherwise it is TRUE.

The bCloseFile subroutine closes the file descriptor lpHandle.

'' name: file_open.tig
.
#define NEW_FILENAME "Brave_New_File.txt"
.
'' create a new file and open it;
'' if the file already exists, just open it;
'' the file path "NEW_FILENAME" is relative to the Current Directory
llFlags = O_RDWR bitor O_CREAT
call lOpenFile(NEW_FILENAME, llFlags, llHandle)
if llHandle <> -1 then

 '' close the file
 call bCloseFIle(llHandle, blIsFileClosed)
endif

22 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

Read from File

sub lReadFile(long lpHandle; var string spvBuffer$; long lpSize; var long
lpvNumBytesRead)

lpHandle the file descriptor that was returned by the lOpenFile subroutine.

spvBuffer$ the buffer to store the read data.

lpSize the maximal size of the data to read.

lpvNumBytesRead return value: the number of bytes that were actually read, or
zero if the end-of-file is reached, or -1 on error.

The lReadFile subroutine reads maximally lpSize bytes from the file with
descriptor lpHandle, storing the results to the spvBuffer$ string.

The return value lpvNumBytesRead is the number of bytes actually read. This
might be less than lpSize, e.g. if there aren't that many bytes left in the file. Note
that reading less than lpSize bytes is not an error.

A value of zero (lpvNumBytesRead = 0) indicates end-of-file (except if the value
of the lpSize argument is also zero). This value is not considered to be an error. If
you keep calling lReadFile staying at end-of-file, it will keep returning zero and
doing nothing else.

If lReadFile returns at least one character, there is no way you can tell whether
end-of-file was reached. But if you did reach the end, the next reading will return
zero.

In case of an error, lReadFile returns {-1}.

23 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

'' name: file_open.tig
.
#define NEW_FILENAME "Brave_New_File.txt"
.
'' create a new file and open it;
'' if the file already exists, just open it;
'' the file path "NEW_FILENAME" is relative to the Current Directory
llFlags = O_RDWR bitor O_CREAT
call lOpenFile(NEW_FILENAME, llFlags, llHandle)
if llHandle <> -1 then
 slBuffer$ = ""
 llBufSize = 10
 '' read 10 bytes from the file referenced by "llHandle"
 call lReadFile(llHandle, slBuffer$, llBufSize, llNumBytesRead)

 '' close the file
 call bCloseFIle(llHandle, blIsFileClosed)
endif

24 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

Write to File

sub lWriteFile(long lpHandle; string spBuffer$; long lpSize; var long
lpvNumBytesWritten)

lpHandle the file descriptor that was returned by the lOpenFile subroutine.

spBuffer$ the buffer to write the data from.

lpSize the number of bytes of the data to write.

lpvNumBytesWritten return value: the number of bytes that were actually written
from the file, or -1 if error occurs.

The lWriteFile subroutine writes lpSize bytes from spBuffer$ to the file with
descriptor lpHandle.

The return value is the number of bytes actually written. This may be lpSize, but
can be smaller. Your program should call lWriteFile in a loop, iterating until all the
data is written.

In the case of an error, lWriteFile returns {-1}.

'' name: file_open.tig
.
#define NEW_FILENAME "Brave_New_File.txt"
.
'' create a new file and open it;
'' if the file already exists, just open it;
'' the file path "NEW_FILENAME" is relative to the Current Directory
llFlags = O_RDWR bitor O_CREAT
call lOpenFile(NEW_FILENAME, llFlags, llHandle)
if llHandle <> -1 then
 slBuffer$ = "0123456789"
 llBufSize = 10
 '' write 10 bytes to the file referenced by "llHandle"
 call lWriteFile(llHandle, slBuffer$, llBufSize, llNumBytesWritten)

 '' close the file
 call bCloseFIle(llHandle, blIsFileClosed)
endif

25 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

Get File Position

The File Position of a Descriptor specifies the position in the file for the next read
or write operation.

sub lGetFilePointer(long lpHandle; var long lpvCurFilePtr)

lpHandle the file descriptor that was returned by the lOpenFile subroutine.

lpvCurFilePtr return value: the current file position, measured in bytes from
the beginning of the file, or -1 if error occurs.

The lGetFilePointer subroutine is used to read the file position of the file
referenced by lpHandle.

The return value lpvCurFilePtr from lGetFilePointer is normally the current file
position, measured in bytes from the beginning of the file. If the value of file
descriptor is invalid, lGetFilePointer returns a value of {-1}.

'' name: file_pointer.tig
.
#define NEW_FILENAME "Brave_New_File.txt"
.
call lOpenFile(NEW_FILENAME, llFlags, llHandle)
if llHandle <> -1 then

 '' get the current file ponter for the file referenced by "llHandle"
 call lGetFilePointer(llHandle, llCurFilePtr)

 '' close the file
 call bCloseFIle(llHandle, blIsFileClosed)
endif

26 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

Set File Position

sub lSetFilePointer(long lpHandle; long lpOffset; byte bpWhence; var long
lpvNewFilePtr)

lpHandle the file descriptor that was returned by the lOpenFile subroutine.

lpOffset the offset to move the file pointer.

bpWhence the position in the file from which the offset should be
calculated.

lpvNewFilePtr return value: the resulting file position after moving the file
pointer, measured in bytes from the beginning of the file, or -1 if
error occurs.

The lSetFilePointer subroutine is used to change the file position of the file
referenced by lpHandle.

The bpWhence argument specifies how the lpOffset should be interpreted, and it
must be one of the symbolic constants FILE_BEGIN, FILE_CURRENT, or FILE_END.

Offset Direction Constant Description

FILE_BEGIN Specifies that lpOffset is a count of characters
from the beginning of the file. This count must
be positive

FILE_CURRENT Specifies that lpOffset is a count of characters
from the current file position. This count may be
positive or negative

FILE_END Specifies that lpOffset is a count of characters
from the end of the file. This count must be
positive

The return value lpvNewFilePtr from lSetFilePointer is normally the resulting file
position, measured in bytes from the beginning of the file. One can use this
return value together with FILE_CURRENT to read the current file position, though
the using of lGetFilePointer is more efficient in this case.

If the file position cannot be modified, or the operation is in some way invalid,
lSetFilePointer returns a value of {-1}.

27 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

The position past the current end can not be set, and the file can not be extended
by using of lSetFilePointer.

'' name: file_pointer.tig
.
#define NEW_FILENAME "Brave_New_File.txt"
.
call lOpenFile(NEW_FILENAME, llFlags, llHandle)
if llHandle <> -1 then

 '' move forward the file ponter on 10 positions from the current pos.
 call lSetFilePointer(llHandle, 10, FILE_CURRENT, llNewFilePtrRead)

 '' close the file
 call bCloseFIle(llHandle, blIsFileClosed)
endif

28 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

Get File Size

sub lGetFileSize(long lpHandle; var long lpvFileSize)

lpHandle the file descriptor that was returned by the lOpenFile subroutine.

lpvFileSize return value: the file size, measured in bytes, or -1 if error
occurs.

The lGetFileSize subroutine is used to read the file size of the file referenced by
lpHandle.

The return value lpvFileSize from lGetFileSize is normally the file size, measured
in bytes. The subroutine lGetFileSize returns a value of {-1} on error.

'' name: file_size.tig
.
#define NOT_EMPTY_FILE_NAME "Not_Empty_File.txt"
.
call lOpenFile(NOT_EMPTY_FILE_NAME, llFlags, llHandle)
if llHandle <> -1 then

 '' get the file size
 call lGetFileSize(llHandle, llFileSize)

 '' close the file
 call bCloseFIle(llHandle, blIsFileClosed)
endif

29 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

Root Directory, Absolute and Relative Paths
A root directory is a very first directory in a hierarchy. The name of the root
directory consists of one character "\" ("/" is also accepted).

An absolute path or full path is a path that points to the same location on the file
system regardless of the current working directory or combined paths.
An absolute path begins always with the root directory name.

A relative path is a path relative to the current working directory, so the full
absolute path may not need to be given.
A relative path must never have the root directory name as a very first part of the
whole path.

30 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

Create Directory

sub bCreateDirectory(string spDirName$; var byte bpvIsCreated)

spDirName$ the name of directory to create.

bpvIsCreated return value: TRUE if the creating is successfully completed,
FALSE if an error occurs.

The bCreateDirectory subroutine creates a new, empty directory with name
spFileName$.

A return value bpvIsCreated of TRUE indicates successful completion, and FALSE
indicates failure.

'' name: dir_create_del.tig
.
#define NEW_DIRNAME "\New_Dir"
.
'' create new directory with the name defined by NEW_DIRNAME
call bCreateDirectory(NEW_DIRNAME, blIsCreated)
if blIsCreated = TRUE then

endif

31 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

Delete File or Directory

sub bDeleteFile(string spFileName$; var byte bpvIsDeleted)

spFileName$ the name of file or directory to delete.

bpvIsDeleted return value: TRUE if the deleting is successfully completed,
FALSE if an error occurs.

The bDeleteFile subroutine deletes a file or a directory spFileName$.

A read-only file (i.e. a file with the set “DIR_ATTR_READONLY” attribute) cannot be
removed.

A directory must be empty before it can be removed; in other words, it can only
contain entries for ‘.’ and ‘..’.

This subroutine returns in bpvIsDeleted TRUE on successful completion, and
FALSE on error.

'' name: dir_create_del.tig
.
#define NEW_DIRNAME "\New_Dir"
.
'' create new directory with the name defined by NEW_DIRNAME
call bCreateDirectory(NEW_DIRNAME, blIsCreated)
if blIsCreated = TRUE then

 '' delete the preivously created directory
 call bDeleteFile(NEW_DIRNAME, blIsDirDeleted)
endif

32 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

Set Current Directory

Current (Working) Directory is a directory to which every not-absolute path is
related.

sub bSetCurrentDir(string spNewCurrentDir$;var byte bpvIsDirSet)

spNewCurrentDir$ the name of new current directory.

bpvIsDirSet return value: TRUE if the setting is successfully completed,
FALSE if an error occurs.

The bSetCurrentDir subroutine sets Current Directory to the spNewCurrentDir$.

This subroutine returns in bpvIsDirSet TRUE on successful setting, and FALSE on
error.

'' name: dir_create_del.tig
.
#define NEW_DIRNAME "\New_Dir"
.
'' create new directory with the name defined by NEW_DIRNAME
call bCreateDirectory(NEW_DIRNAME, blIsCreated)
if blIsCreated = TRUE then

 '' delete the preivously created directory
 call bDeleteFile(NEW_DIRNAME, blIsDirDeleted)
endif

33 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

File Attributes

File Attribute is a byte value describing the most common properties of any
particular file system entry (file or directory). A File Attribute is a combination of
following constants:

File Attribute Constant Description

DIR_ATTR_FILE The entry is a file

DIR_ATTR_READONLY The file or directory is read-only. Applications
can read the file but cannot write to it or delete
it. In the case of a directory, applications cannot
delete it

DIR_ATTR_SYSTEM The file or directory is part of, or is used
exclusively by, the operating system

DIR_ATTR_HIDDEN The file or directory is hidden. It is not included
in an ordinary directory listing

DIR_ATTR_VOLUME Volume label attribute means that this entry
contains the disk label in the filename and
extension fields. Volume label is valid only in
the root directory. Common sense says, there
should be only one volume label per disk. For
the entry to really contain the volume label, the
attribute should be exactly DIR_ATTR_VOLUME

DIR_ATTR_DIRECTORY The entry is a directory

DIR_ATTR_ARCHIVE The file or directory is an archive file or directory.
Applications use this flag to mark files for
backup or removal

34 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

Get File Attributes

sub bGetFileAttributes(string spFileName$; var byte bpvFileAttr; var byte
bpvAttrReadOk)

spFileName$ the name of file.

bpvFileAttr return value: the file attributes.

bpvAttrReadOk return value: TRUE if the reading is successful, FALSE if an
error occurs.

The bGetFileAttributes subroutine reads a File Attribute value of the file
spFileName$, storing the result in the bpvFileAttr.

This subroutine returns in bpvAttrReadOk TRUE on successful reading, and FALSE
on error.

'' name: file_attributes.tig
.
'' get file attributes
call bGetFileAttributes(NEW_FILENAME, blCurFileAttr, blIsFileAttrOk)
if blIsFileAttrOk = TRUE then
 '' check whether the file is read-only file
 if blCurFileAttr bitand DIR_ATTR_READONLY = DIR_ATTR_READONLY then

 endif
endif

35 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

Set File Attributes

sub bSetFileAttributes(string spFileName$; byte bpNewFileAttr; var byte
bpvAttrSetOk)

spFileName$ the name of file.

bpNewFileAttr the new file attributes.

bpvAttrSetOk return value: TRUE if the writing is successful, FALSE if an
error occurs.

The bSetFileAttributes subroutine writes the new File Attribute value
bpNewFileAttr of the file spFileName$.

This subroutine returns in bpvAttrSetOk TRUE on successful writing, and FALSE on
error.

'' name: file_attributes.tig
.
'' make the file to the read-only one setting an appropriate attribute
blNewFileAttr = blNewFileAttr bitor DIR_ATTR_READONLY
call bSetFileAttributes(NEW_FILENAME, blNewFileAttr, blIsFileAttrOk)
if blIsFileAttrOk = TRUE then

endif

36 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

File Time and Date
Time and Date stamps are represented in the FAT system in the following special
formats.

The file time format:
Bits Range Translated Range Valid Range Description
0..4 0..31 0..62 0..59 Seconds/2
5..10 0..63 0..63 0..59 Minutes
11..15 0..31 0..31 0..23 Hours

The file date format:
Bits Range Translated Range Valid Range Description
0..4 0..31 0..31 1..28 up to 1..31 Day
5..8 0..15 0..15 1..12 Month
9..15 0..127 1980..2107 1980..2107 Year (+1980)

37 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

Convert Time and Date Stamps
The FAT time and date stamps can be converted from packed representation to
the usual second, minute, hour and day, month, year values and vice versa by
using of the subroutines lUnPackTime, lUnPackDate, wPackTime, and
wPackDate.

sub lUnPackTime(word wpPackedTime; var long lpvSec, lpvMin, lpvHour)

wpPackedTime the time packed in FAT format.

lpvSec return value: unpacked seconds.

lpvMin return value: unpacked minutes.

lpvHour return value: unpacked hours.

sub lUnPackDate(word wpPackedDate; var long lpvDay, lpvMonth, lpvYear)

wpPackedDate the date packed in FAT format.

lpvDay return value: unpacked day.

lpvMonth return value: unpacked month.

lpvYear return value: unpacked year.

sub wPackTime(long lpSec, lpMin, lpHour; var word wpvPackedTime)

lpSec unpacked seconds.

lpMin unpacked minutes.

lpHour unpacked hours.

wpPackedTime return value: the time packed in FAT format.

sub wPackDate(long lpDay, lpMonth, lpYear; var word wpvPackedDate)

lpDay unpacked day.

lpMonth unpacked month.

lpYear unpacked year.

38 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

wpvPackedDate return value: the date packed in FAT format.

'' name: file_time.tig
.
'' set the following new file time;
'' at first, pack it
call wPackDate(14, 7, 2002, wlCreateDate)
call wPackTime(30, 59, 23, wlCreateTime)
call wPackDate(14, 7, 2002, wlAccessDate)
call wPackDate(14, 7, 2002, wlWriteDate)
call wPackTime(30, 59, 23, wlWriteTime)
call bSetFileTime(NEW_FILENAME, wlCreateDate, wlCreateTime, wlAccessDate, &
 wlWriteDate, wlWriteTime, blIsTimeOk)
call vSynchronizeFS()

'' get the actualy set file time
call bGetFileTime(NEW_FILENAME, wlCreateDate, wlCreateTime, wlAccessDate, &
 wlWriteDate, wlWriteTime, blIsTimeOk)
'' unpack all date and time entries
call lUnPackDate(wlCreateDate, llDay, llMon, llYear)
call lUnPackTime(wlCreateTime, llSec, llMin, llHour)
call lUnPackDate(wlAccessDate, llDay, llMon, llYear)
call lUnPackDate(wlWriteDate, llDay, llMon, llYear)
call lUnPackTime(wlWriteTime, llSec, llMin, llHour)

39 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

Get File Time

sub bGetFileTime(string spFileName$; var word wpvCreateDate, wpvCreateTime,
wpvAccessDate, wpvWriteDate, wpvWriteTime; var byte bpvIsTimeRead)

spFileName$ the name of file.

wpvCreateDate the date the file was created.

wpvCreateTime the time the file was created.

wpvAccessDate the date the file was last accessed.

wpvWriteDate the date the file was last modified.

wpvWriteTime the time the file was last modified.

bpvIsTimeRead return value: TRUE if the reading is successful, FALSE if an
error occurs.

The bGetFileTime subroutine retrieves the date and time that a file spFileName$
was created, last accessed, and last modified.

All the time and date fields are represented in the format described in the "File
Time and Date ".

'' name: file_time.tig
.
'' get the actualy set file time
call bGetFileTime(NEW_FILENAME, wlCreateDate, wlCreateTime, wlAccessDate, &
 wlWriteDate, wlWriteTime, blIsTimeOk)
'' unpack all date and time entries
call lUnPackDate(wlCreateDate, llDay, llMon, llYear)
call lUnPackTime(wlCreateTime, llSec, llMin, llHour)
call lUnPackDate(wlAccessDate, llDay, llMon, llYear)
call lUnPackDate(wlWriteDate, llDay, llMon, llYear)
call lUnPackTime(wlWriteTime, llSec, llMin, llHour)

40 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

Set File Time

sub bSetFileTime(string spFileName$; word wpCreateDate, wpCreateTime,
wpAccessDate, wpWriteDate, wpWriteTime; var byte bpvIsTimeWritten)

spFileName$ the name of file.

wpCreateDate the date the file was created.

wpCreateTime the time the file was created.

wpAccessDate the date the file was last accessed.

wpWriteDate the date the file was last modified.

wpWriteTime the time the file was last modified.

bpvIsTimeWritten return value: TRUE if the writing is successful, FALSE if an
error occurs.

The bSetFileTime subroutine sets the date and time that a file spFileName$ was
created, last accessed, and last modified.

All the time and date fields are represented in the format described in the "File
Time and Date".

'' name: file_time.tig
.
'' set the following new file time;
'' at first, pack it
call wPackDate(14, 7, 2002, wlCreateDate)
call wPackTime(30, 59, 23, wlCreateTime)
call wPackDate(14, 7, 2002, wlAccessDate)
call wPackDate(14, 7, 2002, wlWriteDate)
call wPackTime(30, 59, 23, wlWriteTime)
call bSetFileTime(NEW_FILENAME, wlCreateDate, wlCreateTime, wlAccessDate, &
 wlWriteDate, wlWriteTime, blIsTimeOk)

41 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

Find File
Two subroutines described below return the result of the searching in a string
used as a memory block storing the data of different types and sizes. The
particular fields of such a block can be accessed by means of the built-in
functions (like nfroms, rfroms, mid$ etc.) reading the definite number of bytes
from the specific offset into a variable. The following offset and size values can
be applied for accessing the information about a found file:

Offset Size Description
FFD_ATTR_OFFS FFD_ATTR_SIZE file attribute
FFD_CREATE_TIME_MS_OFFS FFD_CREATE_TIME_MS_SIZE ms part of file

creating time
FFD_CREATE_TIME_OFFS FFD_CREATE_TIME_SIZE file creating time
FFD_CREATE_DATE_OFFS FFD_CREATE_DATE_SIZE file creating date
FFD_ACCESS_DATE_OFFS FFD_ACCESS_DATE_SIZE date of the last

file access
FFD_SIZE_OFFS FFD_SIZE_SIZE file size
FFD_NAME_OFFS FFD_NAME_SIZE file name (max.

8 symbols)
FFD_EXT_OFFS FFD_EXT_SIZE file extension

(max. 3 symbols)
FFD_LONG_NAME_OFFS FFD_LONG_NAME_SIZE long file name
FFD_ABRIDGED_NAME_OFFS FFD_ABRIDGED_NAME_SIZE abridged file

name

Note:

1. The following subroutines searches only for short file names (the names
in the format 8.3). So two long names with 6 or more equal first
characters can not be differentiated.

2. If the file name was found and there is an entry for the long name, this
long name will be saved in the memory block at the
FFD_LONG_NAME_OFFS offset or at the FFD_ABRIDGED_NAME_OFFS
offset (if this form of presentation was preferred).

3. The file name at the FFD_NAME_OFFS offset is extended with blanks up
to FFD_NAME_SIZE (8) size; the file extension at the FFD_EXT_OFFS
offset – up to FFD_EXT_SIZE (3) size.

4. The abridged form of presentation makes sense if one knows that the
file name is in the format 8.3 and one would like to use the found name
(placed at the FFD_ABRIDGED_NAME_OFFS offset in the format 8.3 with
dot and without extending blanks) directly in the next file operation.

42 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

5. The size of the memory block can be equal or greater than
FFD_STRUCT_SHORT_SIZE.

6. The following size constants are predefined:
- FFD_STRUCT_SHORT_SIZE – without fields for the long or

abridged file name
- FFD_STRUCT_ABRIDGED_SIZE - FFD_STRUCT_SHORT_SIZE + the

maximal length of the file name in the abridged form
(FFD_NAME_SIZE + FFD_EXT_SIZE + 1[for "dot"])

- FFD_STRUCT_FULL_SIZE - FFD_STRUCT_SHORT_SIZE + the
maximal length of the long file name

- FFD_STRUCT_DEFAULT_SIZE - FFD_STRUCT_ABRIDGED_SIZE

43 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

Search for File Name

sub bFindFirstFile(string spSearchedFileName$; var string spvFfdStruct$; var byte
bpvFound)

spSearchedFileName$ the name of the file to search for.

spvFfdStruct$ return value: data block (string) that contains information about
the file if it was found.

bpvFound return value: TRUE if the file is found, FALSE if an error occurs.

The bFindFirstFile subroutine searches a directory for a file whose name matches
the specified spSearchedFileName$ filename
and fills on success the spvFfdStruct$ string with the information about the
found file. The spSearchedFileName$ filename can contain wildcard characters (*
and ?).

sub bFindNextFile(var string spvFfdStruct$; var byte bpvFound)

spvFfdStruct$ return value: data block (string) that contains information about
the file if it was found.

bpvFound return value: TRUE if the file is found, FALSE if an error occurs.

The bFindNextFile subroutine continues the searching a directory for a file whose
name matches the filename that was specified in the previous call of the
bFindFirstFile subroutine in the parameter spSearchedFileName$ and fills on
success the spvFfdStruct$ string with the information about the found file. The
process begins at the position next to the position where the previous search
was successfully completed by the bFindFirstFile or bFindNextFile subroutine.

'' name: file_time.tig
.
'' look for FILENAME
call bFindFirstFile(FILENAME, slFfdStruct$, blFound)
'' read the attributes and exact name for FILENAME
blFileAttr = nfroms(slFfdStruct$, FFD_ATTR_OFFS, FFD_ATTR_SIZE)
slFileName$ = mid$(slFfdStruct$, FFD_LONG_NAME_OFFS, len(slFfdStruct$) -
FFD_LONG_NAME_OFFS)
'' look for FILENAME again
call bFindNextFile(slFfdStruct$, blFound)
.

44 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

Get Information About File System

sub bGetFileSystemInfo(var string spvBootRecord$; var byte bpvIsBootRecRead)

spvBootRecord$ return value: data block (string) that contains information
about the the file system.

bpvIsBootRecRead return value: TRUE if the boot record is successfully read,
FALSE if an error occurs.

The bGetFileSystemInfo subroutine reads the information about the file system
into the spvBootRecord$ string. The information is extracted from the boot record
of a FAT-formatted storage media.

The bGetFileSystemInfo subroutine saves the result in the spvBootRecord$ string
used as a memory block storing the data of different types and sizes. The
particular fields of such a block can be accessed by means of the built-in
functions (like nfroms, rfroms, mid$ etc) reading the definite number of bytes
from the specific offset into a variable. The following offset and size values can
be applied for accessing the information about a the storage media:

Offset Size Description
BS_OEM_NAME_POS BS_OEM_NAME_SIZE the system

that
formatted the
disk

BPB_BYTES_PER_SECT_POS BPB_BYTES_PER_SECT_SIZE the length in
bytes of one
physical
sector

BPB_SECT_PER_CLUSTER_POS BPB_SECT_PER_CLUSTER_SIZE the number
of sectors in
one logical
cluster

BPB_RESERVED_SECT_POS BPB_RESERVED_SECT_SIZE the number
of reserved
sectors

BPB_NUMBER_OF_FATS_POS BPB_NUMBER_OF_FATS_SIZE the number
of File
Allocation
Tables

45 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

BPB_ROOT_ENTRIES_POS BPB_ROOT_ENTRIES_SIZE the number
of entries in
the root
directory

BPB_TOTAL_SECT_POS BPB_TOTAL_SECT_SIZE total number
of sectors on
the disk

BPB_MEDIA_POS BPB_MEDIA_SIZE media
descriptor

BPB_SECT_PER_FAT_POS BPB_SECT_PER_FAT_SIZE the number
of sectors in
one FAT

BPB_HIDDEN_SECT_POS BPB_HIDDEN_SECT_SIZE the number
of hidden
sectors

BPB_TOTAL_SECT_BIG_POS BPB_TOTAL_SECT_BIG_SIZE the a number
of sectors if
greater
65535

BS_VOLUME_LABEL_POS BS_VOLUME_LABEL_SIZE the disk label
BS_FILE_SYSTEM_POS BS_FILE_SYSTEM_SIZE the file

system name
(FAT12/16)

Note:

The size of the spvBootRecord$ string must be equal or greater than
BOOT_RECORD_SIZE.

46 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

Synchronize the File System

For reasons of efficiency, some intensively used data structures of the FAT file
system are temporary stored in the RAM memory while the file system operations
are performed. Before the permanent storage media (e.g. SD-Card) is unplugged,
all the data structures must be copied from the RAM to the permanent storage
media. The process of copying of the data is named “synchronization”. The
synchronization may be performed either by calling the vSynchronizeFS
subroutine explicitly or by implementing a task, that sets a value of the
synchronization timeout using the lSetSyncTimeout subroutine and calls in the
endless loop the bSynchronizeFSRegularly subroutine.
The synchronization timeout values are measured in seconds.

sub vSynchronizeFS()

The vSynchronizeFS subroutine writes to the media all data structures that were
temporary saved in the RAM.

sub bGetSyncTimeout(var long lpvSyncTimeout; var long
lpvCurSyncTimeoutCounter)

lpvSyncTimeout return value: the recently set synchronization timeout.

lpvSyncTimeoutCounter return value: the current value of the timeout counter.

The lGetSyncTimeout subroutine returns the recently set synchronization timeout
value in the lpvSyncTimeout and the current value of the timeout counter in the
lpvCurSyncTimeoutCounter.

If the timeout values have not been yet initialised, the lGetSyncTimeout
subroutine returns –1 in the both lpvSyncTimeout and
lpvCurSyncTimeoutCounter.

sub bSetSyncTimeout(long lpNewSyncTimeout; var long lpvPrevSyncTimeout)

lpNewSyncTimeout the new value of the synchronization timeout.

lpvPrevSyncTimeout return value: the previous value of the synchronization
timeout.

47 www.wilke.de - 0241 / 918 900

Memory Cards – Tiger Basic API

The lSetSyncTimeout subroutine sets the new synchronization timeout value to
the lNewSyncTimeout value.

The lSetSyncTimeout subroutine returns the previously set synchronization
timeout value in the lpvPrevSyncTimeout or –1 if it has not been yet initialised.

sub bSynchronizeFSRegularly(var byte bpvTimeoutReached)

bpvTimeoutReached return value: TRUE if the synchronisation was
performed, else FALSE.

The bSynchronizeFSRegularly subroutine calls the vSynchronizeFS subroutine
when the synchronization timeout is over.

