

1 www.wilke.de - 02405/ 40855 - 0

PLSI2_Pp.TDD

Measure pulse lengths with TIMERA
This device driver measures the pulse length (high and low) at a pin. The file

name given during installation of the driver specifies the pins at which the pulse
length measurement is to take place. The resolution is determined by the TIMERA
setting.

Installation of the driver

INSTALL DEVICE #D, "PLSI2_Pp.TDD"[, P1, P2, P3]

D is a constant, variable or expression of the data type BYTE,
WORD, LONG in the range from 0...63 and stands for the device
number of the driver.

Pp in the file name stands for:
P: internal port
p: measuring pin.

P1 is a parameter which sets the measurement to 16 or 32 bit
32: sets a 32-bit measurement
any other or smaller value sets a 16-bit measurement.

P2 is a parameter which automatically extends the sign from WORD
to LONG in a 16-bit measurement.
0: sign is extended
1: sign not extended

P3 is an optional parameter to determine the length of the brief
starting pulse (valid values Tiger-1: 1…10; Tiger-2: 1…80)(leave
unchanged: 0) (Default: 3@T1, 24@T2 = 5µs)

2 www.wilke.de - 02405/ 40855 - 0

PLSI2_Pp.TDD

Secondary addresses

Reading out the results is possible from different secondary addresses:

Secondary address Function Instruction

0 Starts / Stops the measurement PUT

1 Starts the measurement with an
additional brief starting pulse

PUT

The measurement is started by transferring a value to the driver with a PUT
instruction. The transferred value determines the action of the driver:

Value Read operation

0 Stops the measurement

1 Starts the measurement with the next flank

2 Starts the measurement with the next rising flank

3 Starts the measurement with the next falling flank

Once the measurement has started PLSI2 waits for the matching flank in the
cycled of the TIMERA ticks. Once the flank has arrived the measurement is carried out
in time units specified by TIMERA. The 'high' part of the pulse is saved as positive
number in the buffer, the 'low' part as a negative number. The measurement is
stopped when the buffer is full or when a stop command is sent.

A 16-bit measurement has certain advantages:

 Lower load on the CPU.
 The buffer can hold more measured values.

Since WORD variables have no sign the measured values should be read out
with a LONG variable. The driver automatically adds the appropriate sign from WORD
to LONG. If the measured value were to be read out with WORD variables or the
automatic sign extension deactivated all measured values for the 'low' part of the
pulse 65536 would be minus the measured time.

Note: If the TIMERA frequency is altered during measurements this produces
values which are no longer reconstructable.

!

3 www.wilke.de - 02405/ 40855 - 0

PLSI2_Pp.TDD

User Function Codes

User-Function-Codes of PLSI2_Pp.TDD for requesting parameters (Instruction GET,
secondary address 0):

No Symbol
Prefix: UFCI_

Description

1 UFCI_IBU_FILL Capacity of input buffer (Byte)

2 UFCI_IBU_FREE Free space in input buffer (Byte)

3 UFCI_IBU_VOL Size of input buffer (Byte)

65 UFCI_LAST_ERRC Last Error-Code

99 UFCI_DEV_VERS Driver version

User-Function-Codes of PLSI2_Pp.TDD for setting of parameters (Instruction PUT,
secondary address 0):

No Symbol
Prefix: UFCO_

Description

1 UFCO_IBU_ERASE Delete input buffer

128 UFCO_PLS_SIGN 0: 16-bit values are evaluated with sign (-
32767...+32768)
1: 16-bit values are evaluated without sign
(0...65535)

133 UFCO_PLS_STOP Stops the measurement

4 www.wilke.de - 02405/ 40855 - 0

PLSI2_Pp.TDD

Generate brief starting pulse

For some devices it is necessary to pulse the pin as a short starting signal.
Please start the pulse length measurement via secondary address 1 to pulse briefly.
The length of the starting pulse can be adjusted with parameter P3 in the install
device. Directly after calling the PUT procedure, the PLSI2 pin is switched to output
and the pulse is generated. Immediately after the starting pulse, the PLSI2 line is
switched to input again and the pulse length measurement starts as usual.

IMPORTANT: The PLSI2 line is switched to OUTPUT while sending the pulse.
Consider this in your circuit!

 P3 = 1 P3 = 3 P3 = 10 P3 = 24 P3 = 80

tp (@T1) 3,3µs 5µs 14,8µs n.a. n.a.

tp (@T2) 590ns 870ns 2,4µs 5µs 16,2µs

Starts pulse length measurement including brief starting pulse:

PUT #D, #1, 2 'start at next rising edge

5 www.wilke.de - 02405/ 40855 - 0

PLSI2_Pp.TDD

Program example:

'--

'Name: PLSI2.TIG

'--

user_var_strict

#include define_a.inc

#include UFUNC3.INC

TASK Main 'begin task MAIN

LONG FILLING, F

'install LCD-driver (BASIC-Tiger)

 INSTALL DEVICE #1, "LCD1.TDD"

'install LCD-driver (TINY-Tiger)

'INSTALL DEVICE #1, "LCD1.TDD", 0, 0, 0, 0, 0, 0, 80h, 8

 INSTALL_DEVICE #2, "TIMERA.TDD",1,250 'time base 10kHz

 INSTALL_DEVICE #3, "PLSI2_80.TDD",0 'install pulse length measurement

 INSTALL DEVICE #4, "SER1B_K1.TDD", BD_19_200, DP_8N, YES, BD_19_200,

DP_8N, YES

 USING "UD<8><1> 3,3,3,3.3" 'set decimal point at /1000

 PRINT #1, "<1>pulses on L80";

 run_task disp

'0 = stop measurement immediately

'1 = start measurement with next edge

'2 = start measurement with next rising edge

'3 = start measurement with next falling edge

 PUT #3, 2 'start at next edge

 LOOP 999999999 'many loops

 GET #3,#0,#UFCI_IBU_FILL,0,FILLING 'if results are in the buffer

 IF FILLING > 1 THEN

 GET #3, #0, 4, F 'read result in mHz

 F = ABS(F)

 PRINT_USING #1, "<1BH>A<0><2><0F0H>plsl0 L80:";F;

 PRINT_USING #4, "plsl0:";F;"<9>";

 GET #3, #0, 4, F 'read result in mHz

 F = ABS(F)

 PRINT_USING #1, "<1BH>A<0><3><0F0H>plsl1 L80:";F;

 PRINT_USING #4, "plsl1:";F

 PUT #3, #0, #UFCO_IBU_ERASE, 0 'ase buffer

 PUT #3, 2 'ing edge

 WAIT_DURATION 10

 ENDIF

 ENDLOOP

END 'end task MAIN

TASK disp

 BYTE i

 LONG f

 for i = 0 to 0 step 0

 get #3, #0, #UFCI_IBU_FILL, 0, f

 print #1, "<1bh>A<0><1><0f0h>fill: ";f;" ";

 wait_duration 100

 next

END

